RoleCast
Finding Missing Security Checks
When You Do Not Know What Checks Are

Sooel Son, Kathryn S. McKinley,
Vitaly Shmatikov

Mateusz Galimski
May 21, 2012

Table of contents

Introduction

security logic in web applications
analysis overview

experimental evaluation
conclusion

Introduction

e \Web applications interact with untrusted
users and receive untrusted network inputs

e security checks prior to executing security-
sensitive events

e objective is to develop a robust method for
finding missing security checks in web
applications

Introduction

e casier if the programmer formally specifies
the application’s security policy, e.g., via
annotations or data-flow assertions

e the overwhelming majority of Web
applications today are not accompanied by
specifications of their intended authorization
policies

Introduction, previous techniques

e syntactic definition of checks as inputs

e must know a priori the syntactic form of
every check

e it does not work for finding missing
authorization checks in applications because
there is no standard set of checks used by
all applications

e must infer the set of role-specific checks
from the application’s code

Introduction, RoleCast

e automatically infers:
o the set of user roles
o the security checks specific to each role
e finds missing security checks, does not rely
on programmer annotations or an external
specification of intended authorization policy
e does not assume a priori which methods or
variables implement security checks

Introduction, RoleCast

e exploits the idea that there is a small number
of sources for authorization information (e.g.,
session state, cookies, results of reading the
user database)

e all authorization checks involve a conditional
branch on variables holding authorization
information

e each page is typically implemented by one
or more program files

Introduction, RoleCast

e this approach infers the Web application’s
authorization logic under the assumption that
the application follows common code design
patterns, it may suffer from both false
positives and false negatives

e nevertheless, it works well

Introduction, other approaches (1)

e faint checks, taint analysis
O cross-site scripting
O SAQL injections

O if (user == ADMIN) {DB query(“"DROP TABLE
AllUsers”)}
O data-flow not control-flow
e explicit security policy
o not useful enough

Introduction, other approaches (2)

e dynamic analysis

O there is no guarantee that the set of checks
observed during test executions is comprehensive,
dynamic analysis may miss checks

® dynamic and static analyses are complementary

Security Logic in Web Applications

e focus on server-side Web applications,

which are typically implemented in PHP and
JSP

e client-side applications, which are typically

Implemented in JavaScript are outside the
scope

Security Logic in Web Applications

e PHP programs use a flat file structure with a
designated main entry point

e a network user can directly invoke any PHP
file by providing its name as part of the URL

e |f the file contains executable code outside of
function definitions, this code will be
executed

Security Logic in Web Applications

e JSP (Java Server Pages) is a Java
technology for dynamically generating HTML
pages

e mixes Java statements with XML and HTML
tags

e Dbuild on Java, more object-oriented features
than PHP

e executes on Java Virtual Machine

Security Logic in Web Applications

e the languages are quite different

e to demonstrate that our approach we provide
a generic method for analyzing security of
Web applications regardless of the
Implementation language, we apply our
analysis to both JSP and PHP applications

Security Logic in Web Applications

® translating scripting languages into Java is becoming a
popular approach because it helps improve

performance by taking advantage of mature JVM
compilers

® exploit this practice by:
O converting Web applications into Java class files

O extending the Soot static analysis framework for

Java programs with new algorithms for static
security analysis of Web applications

Security Logic in Web Applications

e JSP is translated to Java class files by
Tomcat Web Server
O produces well-formed Java

e PHP is translated by Quercus compiler
O PHP is a dynamically typed language
O process of translation obscures the call graph

O security analysis requires a precise call graph, we
must reverse-engineer this translation

Security Logic in Web Applications

® security-sensitive events:

O all operations that may affect the integrity of

database queries that insert, delete, or update the
database

O statically determining the type of a SQL query in a
given statement requires program analysis.
RoleCast conservatively marks all statically
unresolved SQL queries as sensitive

O SELECT and SHOW queries are deliberately not
included

Security Logic in Web Applications, examples (1)

1 <'php

2 /S Authentication check

3 if(!defined({ "IN ADMIN') || !defined(IN.BLOG))

4 1

5 header (Location: admin.php’):

6 exit

7)

8 switch (Smode)

q {

10 case ‘edit’:

1

12 // Security—sensitive database operation

13 $sql = mysql_query("UPDATE miniblog SET {S%sgl} WHERE
post_id = "{8%id}'") or die(mysql_error()):

14

15 }

16 71>

(a) Miniblog: security logic in adm/index . php

Il

oo -1 o2 Ln ke L

9
10
11

12

13
14

Security Logic in Web Applications, examples (2)

<Tphp

require _once (" ./admin.php).
ff Authentication check
if (! 1sAdmin ())
die(You are not the admin.)
spage-title = "Comment Successfully Deleted ";

3db = DB _connect($site , 3Suser, 3pass):
DB _select_db($database , %db):

/f Security—sensitive database operation
DB_query(“delete from SthlComments where id=3id”, 5db)
?}

(b) Wheatblog: security logic in admin/delete_comment

Security Logic in Web Applications, examples (3)

1 <Tphp

> session_start () ;

3 // Authentication checking routine

4 if (!3_SESSION]["'member’])

5

6 // net logged in, move to login page

7 header("Location: login.php’).

8 exit :

q }

10 include "inc/config.php’:

11 include "inc/conn.php’;

05 e

13 // Security—sensitive database operation

14 393 = mysql_query(7"INSERT INTO close_bid (item_name ,
seller.name , bidder.name, close_price) ™.5%sqld);

15 3del = mysqgl_query({“delete from dn_bid where dn_name =
Sresult['dn_name’].777);

16 ...

17 7>

(c) DNscript: security logic in accept_bid.php

Security Logic in Web Applications, observations

® |mportant observations:

O when a security check fails, the program quickly
terminates or restarts

O every path leading to a security-sensitive event from

any program entry point must contain a security
check

O distinct application-specific roles usually involve
different program files

Security Logic in Web Applications, file structure

& DNscript
Admin/EditCat.php BidCount.php
AcceptBid.ph S
Admin/AcceptBid.php & e ,,,: e &
70y S| & Admin/ v loseBid.php

%

Admin/ Admin/config.php Koot t::onn ph DelCB.php

DolLogin.php Admin/conn.ph
& i MdDN php .;..ﬁ 8 %
B 3 E
=

Admin/ Makaﬂﬁar php D‘El php
AcceptSub.php Admln.-’Del php 5.
N Admin/DelCat.php Etalsphp

¢° AddCat2.php

\ *
@ <@ Mametﬂffer php config.php

A

Administrator

& MNormal user

l
2
3
4
A
s}
.
!
49

example vulnerability (1)

index.php

// Security

check

if(! $_SESSION]|[*logged_-in’])

{

doLogin () ;
die ;

}

¥ P 1sset (S.GEL] action®]})

$action =

$_GET[’ action’];

switch(Saction){
case " delete_post’:

include
break ;

"delete_post.php’;

case "update_post’:

include

break:
default:

include

"update_post . php’;

"default . php " ;

=3 o i B b b

example vulnerability (2)

delete_post.php

// No security check
if (isset ($_GET[’post_id’]))
$post_id = $_GET[post_.id’];

DBConnect() ;

//f Security—sensitive event

$sql="DELETE FROM blogdata WHERE post_id=Spost_id”;

Sret=mysqgl_-query($sql) or die(”Cannot query the
database.
");

L= oo o

L oo =] b) i B ek d =

L)

example vulnerability (3)

update_post.php

// Security check

if (!$_SESSION|[logged.in’]) die;

if (isset (3_-GET[post_id’]))
$post_id = $_GET[’ post_.id’];

if (isset (S_GET|[content’]))
$content = $_GET[’'content’];

DBConnect() ;

// Security—sensitive event

$sql = "UPDATE table_post SET cont=$content WHERE id=

Spost_id™;
Sret=mysql-query($sql) or die(”Cannot query
database.
"):

the

Analysis overview

® RoleCast has four analysis phases:

O

O

O

Phase | identifies critical variables that control
whether security-sensitive events execute or not

Phase Il partitions contexts into groups that
approximate application-specific user roles

Phase Il computes for each role the subset of

critical variables responsible for enforcing the
security logic of that role

Phase |V discovers missing security checks by
verifying whether the relevant variables are checked
consistently within the role

'm” L, Tomcat > : :
Architecture i :: g JAVA
class files

T

: Quercus
PHP files > | Compier D {}

m kA
% Jimple '”*:!Dlﬂtg: o
call graph U —
b A — [cnomnenane |

Call graph U nE
IE 7 Control dependence
53‘/, <: dominator analysis

Dominator information

<: Calling context analysis
1

Calling context list

" | s

aseud

Architecture

?gc

Security-sensitive
calling context list

G <—
Critical method Critical variable
list list

1D<t:

Partitioned
calling context list

11@<:

Security=critical variable
list

<":

Final vulnerability
report

N

String propagation
data-flow analysis

Critical branch, mEh-:::d and
variable analysis

Partitioning file contexis
into roles

=

i

Collecting securty—critical
variables within each role

U

10|11

Inconsistency analysis

JJJJJJJJJJJJJJJJJJJJJJ

Experimental Evaluation

® all experiments in this section were performed on a
Pentium 3GHz with 2G of RAM

Experimental Evaluation

Web applications

LoC Java LoC analysis time

minibloggie 1.1
DNscript
mybloggie 1.0.0
FreeWebShop 2.2.9
Wheatblog 1.1
phpnews 1.3.0
Blog199; 1.9.9
eBlog 1.7

kaibb 1.0.2
JsForum (JSP) 0.1
JSPblog (JSP) 0.2

2287

3150
8874
8613
4032
6037
8627
13862
4542
42472
087

3395

11186
26958
28406
11959
13086
| 8749
24301
21062
4242
087

47 sec

47 sec
74 min

[10 min
2 min
|66 min
75 min
410 min
197 min
J2 sec
16 sec

Experimental Evaluation

DB operations (|contexts|)
Web applications | candidates sensitive unresolved
minibloggie 1.1 13 3 0
DNscript 99 26 0
mybloggie 1.0.0 195 26 0
FreeWebShop 2.2.9 699 175 0
Wheatblog 1.1 [11 30 0
phpnews 1.3.0 80 14 3
Blog199; 1.9.9 195 68 2
eBlog 1.7 677 201 0
kaibb 1.0.2 676 160 0
JsForum (JSP) 0.1 60 32 0
JSPblog (JSP) 0.2 6 3 0

Experimental Evaluation

false positives no
Web applications | roles no roles | auth. vuln.
minibloggie 1.1 0 0 0 l
DNscript l J 0 3
mybloggie 2.1.6 0 0 0 l
FreeWebShop 2.2.9 0 l 0 0
Wheatblog 1.1 l 0 l 0
phpnews 1.3.0 l 12 0 0
Blog199j 1.9.9 0 l 0 0
eBlog 1.7 0 4 2 0
kaibb 1.0.2 0 11 l 0
JsForum (JSP) 0.1 0 0 0 5
JSPblog (JSP) 0.2 0 0 0 3
totals 3 34 4 13

Conclusion

® \When evaluated on a representative sample of open-
source, relatively large PHP and JSP applications,
RoleCast discovered 13 previously unreported
vulnerabilities with only 3 false positives

I-d

-1 o Lm e Laa

Vulnerabilities: DNscript (1)

admin/AddCat2.php

< Iphp

/f No security check. It shouwld have been checked

with $_SESSION[‘admin ']
include "inc/config.php’:

gcen_cat(cat_name)

include ’inc/conn.php’:
Svalues = "VALUES (77 .5%_POST['cat_name’™]. 7)) ";
/! Security—sensitive event
Sinsert = mysqgl_query({ "INSERT INTO
"o 5values)

if(Sinsert)
{

mysql_close (3conn) :
}
™

Vulnerabilities: DNscript (2)

DelCB.php

< Tphp

/f No security check. It should have been checked
with 3$_SESSION| ‘member ']

include "inc/config.php’:

inclade "inc/conn.php’:

// Securitvy—sensitive event

6 Sdelete = mysqgl. quenl['DELETE FROM close_bid where
item_name = . ditem_name.” ") ;

7 if(Sdelete)

{

0 mysql_close (3conn) ;

10

1}

12 T

I~d

n = e

j=_a

Vulnerabilities: phpnews 1.3.0 (1)

index.php
1 if (S_.GET| "action’] == ‘redirect’)
2 {
4 |
5 Stime_start = getMicrotime () :

6 define{ "PHPNews ., 1):

7 session_start();

8 require(‘auth.php’):

g ...

w // Security—sensitive operation is in postl
11 post2 ()

1
2
3

b= I I = e

10
11

12

13

Vulnerabilities: phpnews 1.3.0 (2)

auth.php

session_start():

Sresult = mysql_query(SELECT = FROM " . s5db_prefix.
posters WHERE username =
password(y "7 .Sin_password. "\ ") ")

{

}

password =
SdbQueries ++;
If (mysql_numrows(Sresult) !=

Sauth =

true :

W' 8in_user. T\ AND

)

ff Security check using critical variable S$auth

if (!Sauth) {

}

exit:

Vulnerabilities: phpnews 1.3.0 (3)

news.php |\

include ("settings .php’):

else if(5.GET| action’] == "post’)
fullNews () :
function fullNews (){

ff Critical variable $5ettings
If (3Settings | enablecountviews '] ==
Scountviews

news SET views=views+] WHERE 1d=""_.5_GET|["1d "’
=3

T

mysql_guery({ "UPDATE

1) |
".5db_prefix.

RoleCast

