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Introduction

e \Web applications interact with untrusted
users and receive untrusted network inputs

e security checks prior to executing security-
sensitive events

e objective is to develop a robust method for
finding missing security checks in web
applications



Introduction

e casier if the programmer formally specifies
the application’s security policy, e.g., via
annotations or data-flow assertions

e the overwhelming majority of Web
applications today are not accompanied by
specifications of their intended authorization
policies



Introduction, previous techniques

e syntactic definition of checks as inputs

e must know a priori the syntactic form of
every check

e it does not work for finding missing
authorization checks in applications because
there is no standard set of checks used by
all applications

e must infer the set of role-specific checks
from the application’s code



Introduction, RoleCast

e automatically infers:
o the set of user roles
o the security checks specific to each role
e finds missing security checks, does not rely
on programmer annotations or an external
specification of intended authorization policy
e does not assume a priori which methods or
variables implement security checks



Introduction, RoleCast

e exploits the idea that there is a small number
of sources for authorization information (e.g.,
session state, cookies, results of reading the
user database)

e all authorization checks involve a conditional
branch on variables holding authorization
information

e each page is typically implemented by one
or more program files



Introduction, RoleCast

e this approach infers the Web application’s
authorization logic under the assumption that
the application follows common code design
patterns, it may suffer from both false
positives and false negatives

e nevertheless, it works well



Introduction, other approaches (1)

e faint checks, taint analysis
O cross-site scripting
O SAQL injections

O if (user == ADMIN) {DB query(“"DROP TABLE
AllUsers”)}
O data-flow not control-flow
e explicit security policy
o not useful enough



Introduction, other approaches (2)

e dynamic analysis

O there is no guarantee that the set of checks
observed during test executions is comprehensive,
dynamic analysis may miss checks

® dynamic and static analyses are complementary



Security Logic in Web Applications

e focus on server-side Web applications,

which are typically implemented in PHP and
JSP

e client-side applications, which are typically

Implemented in JavaScript are outside the
scope



Security Logic in Web Applications

e PHP programs use a flat file structure with a
designated main entry point

e a network user can directly invoke any PHP
file by providing its name as part of the URL

e |f the file contains executable code outside of
function definitions, this code will be
executed



Security Logic in Web Applications

e JSP (Java Server Pages) is a Java
technology for dynamically generating HTML
pages

e mixes Java statements with XML and HTML
tags

e Dbuild on Java, more object-oriented features
than PHP

e executes on Java Virtual Machine



Security Logic in Web Applications

e the languages are quite different

e to demonstrate that our approach we provide
a generic method for analyzing security of
Web applications regardless of the
Implementation language, we apply our
analysis to both JSP and PHP applications



Security Logic in Web Applications

® translating scripting languages into Java is becoming a
popular approach because it helps improve

performance by taking advantage of mature JVM
compilers

® exploit this practice by:
O converting Web applications into Java class files

O extending the Soot static analysis framework for

Java programs with new algorithms for static
security analysis of Web applications



Security Logic in Web Applications

e JSP is translated to Java class files by
Tomcat Web Server
O produces well-formed Java

e PHP is translated by Quercus compiler
O PHP is a dynamically typed language
O process of translation obscures the call graph

O security analysis requires a precise call graph, we
must reverse-engineer this translation



Security Logic in Web Applications

® security-sensitive events:

O all operations that may affect the integrity of

database queries that insert, delete, or update the
database

O statically determining the type of a SQL query in a
given statement requires program analysis.
RoleCast conservatively marks all statically
unresolved SQL queries as sensitive

O SELECT and SHOW queries are deliberately not
included



Security Logic in Web Applications, examples (1)

1 <'php

2 /S Authentication check

3 if(!defined({ "IN ADMIN') || !defined( IN.BLOG))

4 1

5 header ( Location: admin.php’):

6 exit

7 )

8 switch ( Smode)

q {

10 case ‘edit’:

1

12 // Security—sensitive database operation

13 $sql = mysql_query( "UPDATE miniblog SET {S%sgl} WHERE
post_id = "{8%id}'") or die(mysql_error()):

14

15 }

16 71>

(a) Miniblog: security logic in adm/index . php
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Security Logic in Web Applications, examples (2)

<Tphp

require _once (" ./admin.php ).
ff Authentication check
if ( ! 1sAdmin () )
die( You are not the admin. )
spage-title = "Comment Successfully Deleted ";

3db = DB _connect( $site , 3Suser, 3pass):
DB _select_db( $database , %db):

/f Security—sensitive database operation
DB_query(“delete from SthlComments where id=3id”, 5db)
?}

(b) Wheatblog: security logic in admin/delete_comment



Security Logic in Web Applications, examples (3)

1 <Tphp

> session_start () ;

3 // Authentication checking routine

4 if (!3_SESSION][ "'member’])

5

6 // net logged in, move to login page

7 header( "Location: login.php’ ).

8 exit :

q }

10 include "inc/config.php’:

11 include "inc/conn.php’;

05 e

13 // Security—sensitive database operation

14 393 = mysql_query(7"INSERT INTO close_bid (item_name ,
seller.name , bidder.name, close_price) ™.5%sqld);

15 3del = mysqgl_query({“delete from dn_bid where dn_name =
Sresult['dn_name’].777);

16 ...

17 7>

(c) DNscript: security logic in accept_bid.php



Security Logic in Web Applications, observations

® |mportant observations:

O when a security check fails, the program quickly
terminates or restarts

O every path leading to a security-sensitive event from

any program entry point must contain a security
check

O distinct application-specific roles usually involve
different program files



Security Logic in Web Applications, file structure

& DNscript
Admin/EditCat.php BidCount.php
AcceptBid.ph S
Admin/AcceptBid.php & e ,,,: e &
70y S| & Admin/ v loseBid.php

%

Admin/  Admin/config.php Koot t::onn ph DelCB.php

DolLogin.php Admin/conn.ph
& i MdDN php .;..ﬁ 8 %
B 3 E
=

Admin/ Makaﬂﬁar php D‘El php
AcceptSub.php Admln.-’Del php 5.
N Admin/DelCat.php Etalsphp

¢° AddCat2.php

\ *
@ <@ Mametﬂffer php config.php

A

Administrator

& MNormal user
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example vulnerability (1)

index.php

// Security

check

if( ! $_SESSION]|[ *logged_-in’] )

{

doLogin () ;
die ;

}

¥ P 1sset (S.GEL] action® ]} )

$action =

$_GET[’ action’];

switch( Saction ){
case " delete_post’:

include
break ;

"delete_post.php’;

case "update_post’:

include

break:
default:

include

"update_post . php’;

"default . php " ;
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example vulnerability (2)

delete_post.php

// No security check
if (isset ($_GET[’post_id’]))
$post_id = $_GET[  post_.id’];

DBConnect() ;

//f Security—sensitive event

$sql="DELETE FROM blogdata WHERE post_id=Spost_id”;

Sret=mysqgl_-query($sql) or die(”Cannot query the
database.<br>");

L= oo o
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example vulnerability (3)

update_post.php

// Security check

if (!$_SESSION|[  logged.in’]) die;

if (isset (3_-GET[ post_id’]))
$post_id = $_GET[’ post_.id’];

if (isset (S_GET|[ content’]))
$content = $_GET[ ’'content’];

DBConnect() ;

// Security—sensitive event

$sql = "UPDATE table_post SET cont=$content WHERE id=

Spost_id™;
Sret=mysql-query($sql) or die(”Cannot query
database.<br>"):

the



Analysis overview

® RoleCast has four analysis phases:

O

O

O

Phase | identifies critical variables that control
whether security-sensitive events execute or not

Phase Il partitions contexts into groups that
approximate application-specific user roles

Phase Il computes for each role the subset of

critical variables responsible for enforcing the
security logic of that role

Phase |V discovers missing security checks by
verifying whether the relevant variables are checked
consistently within the role
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Experimental Evaluation

® all experiments in this section were performed on a
Pentium 3GHz with 2G of RAM



Experimental Evaluation

Web applications

LoC Java LoC analysis time

minibloggie 1.1
DNscript
mybloggie 1.0.0
FreeWebShop 2.2.9
Wheatblog 1.1
phpnews 1.3.0
Blog199; 1.9.9
eBlog 1.7

kaibb 1.0.2
JsForum (JSP) 0.1
JSPblog (JSP) 0.2

2287

3150
8874
8613
4032
6037
8627
13862
4542
42472
087

3395

11186
26958
28406
11959
13086
| 8749
24301
21062
4242
087

47 sec

47 sec
74 min

[ 10 min
2 min
|66 min
75 min
410 min
197 min
J2 sec
16 sec



Experimental Evaluation

DB operations (|contexts|)
Web applications | candidates sensitive unresolved
minibloggie 1.1 13 3 0
DNscript 99 26 0
mybloggie 1.0.0 195 26 0
FreeWebShop 2.2.9 699 175 0
Wheatblog 1.1 [11 30 0
phpnews 1.3.0 80 14 3
Blog199; 1.9.9 195 68 2
eBlog 1.7 677 201 0
kaibb 1.0.2 676 160 0
JsForum (JSP) 0.1 60 32 0
JSPblog (JSP) 0.2 6 3 0




Experimental Evaluation

false positives no
Web applications | roles no roles | auth. vuln.
minibloggie 1.1 0 0 0 l
DNscript l J 0 3
mybloggie 2.1.6 0 0 0 l
FreeWebShop 2.2.9 0 l 0 0
Wheatblog 1.1 l 0 l 0
phpnews 1.3.0 l 12 0 0
Blog199j 1.9.9 0 l 0 0
eBlog 1.7 0 4 2 0
kaibb 1.0.2 0 11 l 0
JsForum (JSP) 0.1 0 0 0 5
JSPblog (JSP) 0.2 0 0 0 3
totals 3 34 4 13




Conclusion

® \When evaluated on a representative sample of open-
source, relatively large PHP and JSP applications,
RoleCast discovered 13 previously unreported
vulnerabilities with only 3 false positives
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Vulnerabilities: DNscript (1)

admin/AddCat2.php

< Iphp

/f No security check. It shouwld have been checked

with $_SESSION[ ‘admin ']
include "inc/config.php’:

gcen_cat(cat_name)

include ’inc/conn.php’:
Svalues = "VALUES (77 .5%_POST[ 'cat_name’™]. 7)) ";
/! Security—sensitive event
Sinsert = mysqgl_query({ "INSERT INTO
"o 5values )

if(Sinsert)
{

mysql_close (3conn) :
}
™



Vulnerabilities: DNscript (2)

DelCB.php

< Tphp

/f No security check. It should have been checked
with 3$_SESSION| ‘member ']

include "inc/config.php’:

inclade "inc/conn.php’:

// Securitvy—sensitive event

6 Sdelete = mysqgl. quenl[ 'DELETE FROM close_bid where
item_name = . ditem_name.” ") ;

7 if(Sdelete)

{

0 mysql_close ( 3conn ) ;

10

1}

12 T

I~d

n = e

j=_a



Vulnerabilities: phpnews 1.3.0 (1)

index.php
1 if (S_.GET| "action’] == ‘redirect’)
2 {
4 |
5 Stime_start = getMicrotime () :

6 define{ "PHPNews ., 1):

7 session_start();

8 require( ‘auth.php’):

g ...

w // Security—sensitive operation is in postl
11 post2 ()
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Vulnerabilities: phpnews 1.3.0 (2)

auth.php

session_start():

Sresult = mysql_query( SELECT = FROM " . s5db_prefix.
posters WHERE username =
password(y "7 .Sin_password. "\ ") ")

{

}

password =
SdbQueries ++;
If (mysql_numrows( Sresult) !=

Sauth =

true :

W' 8in_user. T\ AND

)

ff Security check using critical variable S$auth

if (!Sauth) {

}

exit:



Vulnerabilities: phpnews 1.3.0 (3)

news.php |\

include ( "settings .php’):

else if(5.GET| action’] == "post’)
fullNews () :
function fullNews (){

ff Critical variable $5ettings
If (3Settings | enablecountviews '] ==
Scountviews

news SET views=views+] WHERE 1d=""_.5_GET|[ "1d "’
=3

T

mysql_guery({ "UPDATE

1) |
".5db_prefix.
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